TS2 CIRA révisions chimie

Cinétique

Les principaux produits issus de la décomposition thermique du tétraéthyle de plomb Pb(CH₃CH₂)₄, composé gazeux "autrefois" utilisé comme antidétonant, sont du plomb métallique et du butane (linéaire ou ramifié) gazeux.

Lors d'une expérience à 548 K à volume constant, commencée avec du tétraéthyle de plomb pur, la pression en gaz augmente comme suit :

t (en s)	0	60	110	155	297	362	564	infini
P (bar)	0,025	0,028	0,031	0,033	0,0375	0,039	0,043	0,050

- 1. Donner la représentation topologique du butane linéaire et de l'alcane ramifié de même formule brute. Donner le nom de cet alcane.
- 2. Rappeler la loi des gaz parfaits en indiquant les unités de chacun des termes de cette loi.
- **3.** Donner le bilan de la réaction de décomposition du tétraéthyle de plomb.
- **4.** La pression est proportionnelle à la quantité de matière totale en espèces gazeuses $n_{gaz,tot}$. Faire un bilan de matière.

En déduire la relation entre la quantité initiale de tétraéthyle de plomb n_0 , l'avancement de la réaction ξ et la valeur de $n_{gaz,tot}$.

Que vaut, en fonction de la pression initiale P_i , la pression $P_{1/2}$ dans le système, lorsque la moitié du tétraéthyle de plomb initialement présent a réagi ?

5. On suppose que la réaction est d'ordre 1.

Donner la relation entre le temps de demi-réaction τ et la constante de vitesse k dans ce cas. Donner une estimation de k.

6. Tracer un graphique avec en abscisse le temps et en ordonnée la pression. Pourquoi peut-on en déduire que la réaction n'est pas d'ordre 0 ?

Oxydoréduction

Dans un accumulateur au plomb (batterie de voiture), les deux couples redox mis en jeu font intervenir du plomb sous différents degrés d'oxydation:

- du plomb métallique Pb,
- du plomb au degré + II, sous forme du solide PbSO₄ (composé de Pb²⁺ et de SO₄²⁻),
- du plomb au degré + IV, sous forme du dioxyde de plomb, solide de formule PbO₂
- 1. Écrire les deux demi-équations électroniques relatives aux couples ($PbO_2/PbSO_4$) et ($PbSO_4/Pb$) en faisant intervenir dans ces demi-équations électroniques l'ion sulfate SO_4^{2-} pour équilibrer l'élément soufre. Cet ion est apporté dans l'accumulateur par l'acide sulfurique H_2SO_4 .
- 2. Placer ces deux couples sur un axe des potentiels standard croissants. Indiquer le bilan de la réaction qui aura lieu spontanément.

On donne les potentiels standard des deux couples à 298 K:

 $E^{\circ}(PbO_2 / PbSO_4) = +1,69 \text{ V}, \qquad E^{\circ}(PbSO_4 / Pb) = -0,36 \text{ V}.$

- 3. Donner l'expression de la loi de Nernst pour les deux couples étudiés. On donne $\frac{RT}{F}\ln 10 = 0,06$.
- **4.** Calculer la constante d'équilibre de cette réaction à 298 K et conclure sur le caractère total ou non de cette réaction.