DIAGRAMME ENTROPIQUE D'UN CYCLE MOTEUR : CORRECTION

- 1) Par définition à P et T constante : $l_{Vap}(T) = h_{vap}(T) h_l(T)$
- $l_{Vap}(298K) = 2547 105 = 2442 \text{ kJ.kg}^{-1}$ À partir des données du tableau :

$$l_{Vap}(473K) = 2793 - 853 = 1940 \text{ kJ.kg}^{-1}$$

2)

- $A \rightarrow B$: compression isentropique donc $s_B = s_A$ et au point B, l'eau est à l'état de liquide saturant à 473 K donc $s_B = 2,33 \text{ kJ.kg}^{-1}.\text{K}^{-1} = s_A$ (lue dans le tableau).
- $B \rightarrow D$: vaporisation de l'eau à P constante et $T = T_C = cste$ (de liquide saturant à vapeur saturante sèche); on lit dans le tableau $s_D = 6.43 \text{ kJ.kg}^{-1}.\text{K}^{-1}$.
- D \rightarrow E: détente isentropique donc $s_D = s_E = 6.43 \text{ kJ.kg}^{-1}.\text{K}^{-1}$.

Remarque:

d'où:

<u>AN</u>:

On peut retrouver la valeur de s_D par le deuxième principe de la thermo : $\delta q = l_V a p (473 \text{ K})$.

Deuxième principe de la thermo (grandeurs massiques) : $ds = \frac{\delta q}{T} + \delta s_{création}$. Toutes les transformations sont

réversibles donc $\delta s_{création} = 0$.

$$ds = \frac{l_{vap}(473K)}{T_C} \qquad donc \qquad \int_{s_B}^{s_D} ds = s_D - s_B = \frac{l_{V(473K)}}{T_C}$$

$$s_D = s_B + \frac{l_{V(473K)}}{T_C}$$

$$s_D = 2,33 + \frac{1940}{473} = 6.43 \text{ kJ.kg}^{-1}.K^{-1}.$$

3) au point A, à la température $T_F = 298$ K, l'enropie de m kg de corps pur diphasique est : $S_A = S_{liq} + S_{vap}$

c'est-à-dire:
$$s_A = \frac{m_{liq}}{m} s_{liq}(298K) + \frac{m_{vap}}{m} s_{vap}(298K)$$

soit: $ms_A = m_{liq} s_{liq}(298K) + m_{vap} s_{vap}(298K)$ $c'est-\grave{a}-dire: s_A = \frac{m_{liq}}{m} s_{liq}(298K) + \frac{m_{vap}}{m} s_{vap}(298K)$ Par définition, le titre en vapeur est: $x = \frac{m_{vap}}{m}$ et le titre en liquide est $x_L = \frac{m_{liq}}{m} = 1 - x$. Donc, au point A:

Ce qui donne :
$$x_A = (V - x_A) s_{liq}(298K) + x_A s_{vap}(298K) = \frac{KA}{KG}$$

De même, au point E:

$$x_E = \frac{s_E - s_{liq}(298K)}{s_{vap}(298K) - s_{liq}(298K)} = \frac{KE}{KG}$$

<u>AN</u>:

$$x_{E} = \frac{s_{E} - s_{liq}(298K)}{s_{vap}(298K) - s_{liq}(298K)} = \frac{KE}{KG}$$

$$x_{A} = \frac{2,33 - 0,367}{8,56 - 0,367} = 0,24.$$

$$x_{E} = \frac{6,43 - 0,367}{8,56 - 0,367} = 0,74$$

On remarque que xe n'est pas très élevé (en fin de détente dans la turbine) : les goutellettes d'eau produites endommagent sérieursement les aubages de la turbine.

Le titre x_A est assez elevé : il s'agirait donc d'amener au GV par compression un mélange liquide-vapeur (compresseur pour une vapeur et pompe pour un liquide : technologiquement, c'est un problème).

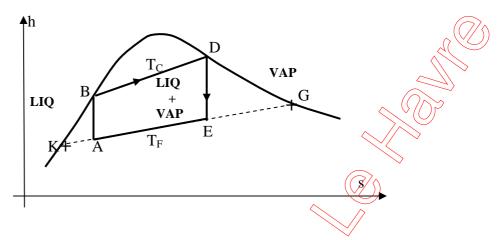
4) Les isobares sont confondues avec les isothermes dans le domaine (Liq+Vap). Or, dans le diagramme de Mollier, dans le domaine (liq+vap), les isobares sont des segments de droite de pente T (la température de chngement d'état). D'après la deuxième identité thermodynamique, dh = Tds + vdP.

Pour la vaporisation à
$$T_C = 473 \text{ K}$$
: $P = \text{cste}$, alors $dP = 0$ donc $\int_{h_B}^{h} dh = T_C \int_{s_B}^{s} ds$ soit :

$$h = (h_B - T_C s_B) + T_C s$$

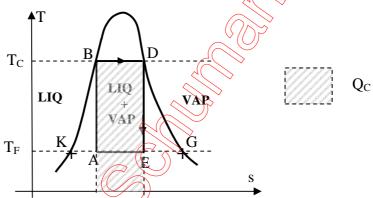
Il s'agit bien d'une droite affine de coefficient directeur T_C.

Concernant la condensation à la température T_F , l'isotherme-isobare est une droite de coefficient directeur $T_F < T_C$.

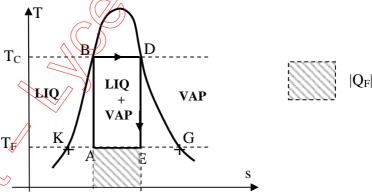


5) D'après le deuxième principe de la thermo, la chaleur $\mathbf{reçue}$ ($Q_C > 0$) par l'eau ap GV est :

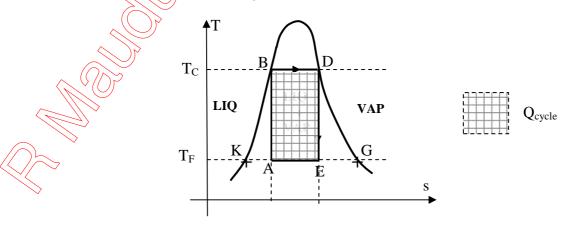
 $Q_C = \int_{s_B}^{s_D} T_C ds$: elle correspond, dans le diagramme (T,s) à l'aire de la surface située sous la courbe $T = T_C$ limitée par les isentropes s_B et s_D .



Au condenseur, $Q_F < 0$: l'eau qui traverse le condenseur cède de la chaleur. Or, $Q_F = \int_{s_E}^{s_A} T_F ds$: elle correspond (en valeur absolue), dans le diagramme (T,s) à l'aire de la surface située sous la courbe $T = T_F$ limitée par les isentropes $s_E = s_D$ et $s_A = s_B$.



Donc, au cours d'un cycle, $Q_C + Q_F = Q_{cycle}$ est l'aire intérieure au cycle et puisque $Q_C > |Q_F|$, $Q_{cycle} > 0$.



6) Le premier principe de la thermodynamique appliqué au cycle de transformations s'écrit :

$$\Delta U_{cycle} = 0 = W_{cycle} + Q_{cycle}$$
.

Donc:

 $W_{cycle} = -Q_{cycle}$ soit $W_{cycle} < 0$ (le cycle est bien moteur)

Avec:

 $|W_{cycle}| = O_{cycle}$

L'aire intérieure du cycle représente aussi |W_{cycle}|.

7) Le rendement thermodynamique du cycle est l'énergie cédée par l'eau sosus forme de travail au cours d'un cycle $(-W_{cycle})$ rapportée à l'énergie thermique Q_C reçue au GV pendant un cycle.

 $\eta = \frac{-W_{cycle}}{Q_C}$ (< 1 :on le voit clairement grâce aux aires des surfaces représentées)

$$\eta = \frac{Q_C + Q_F}{Q_C} = 1 + \frac{Q_F}{Q_C} (Q_F < 0)$$

Ceci est 'expression du rendement de tout cycle moteur ditherme.

Or,
$$Q_F = \int_{s_E}^{s_A} T_F ds = T_F (s_A - s_E) = T_F (s_B - s_D)$$
 et

et $Q_{C} = \int_{s_{B}}^{s_{D}} T_{C} ds = T_{C} (s_{D} - s_{B})$

Donc:

$$\eta = 1 + \frac{T_F(s_B - s_D)}{T_C(s_D - s_B)} = 1 - \frac{T_F}{T_C} = 0.37 (37\%)$$

Il s'agit bien du rendement du moteur de Carnot (2 isothermes reliées par deux isentropes (adiab et rév).